Majority consensus in stochastic populations

Joel Rybicki

Humboldt University of Berlin

Based on joint work with:

Victoria Andaur · Janna Burman · Matthias Függer Manish Kushwaha · Bilal Manssouri · Thomas Nowak **WAND 2024**November 1, 2024

Task: output the initial majority value

Task: output the initial majority value

Task: output the initial majority value

Question: Given $\Delta = |A_0 - B_0|$, how efficiently/likely can we reach majority consensus?

Distributed algorithm = engineered microbial community

Inputs and outputs:
 Two distinct microbial species

- Inputs and outputs:
 Two distinct microbial species
- Well-mixed system (CRN) stochastic interactions

- Inputs and outputs:
 Two distinct microbial species
- Well-mixed system (CRN) stochastic interactions
- Microbial species: biological population dynamics!

Majority consensus in distributed computing

Approximate majority e.g.

- Angluin, Aspnes and Eisenstat (DISC 2007)
- Condon, Hajiaghayi, Kirkpatrick and Maňuch (Natural Computing 2020)

• Exact majority e.g.

- Draief and Vojnović (INFOCOM 2012)
- Alistarh and Gelashvili (ICALP 2015)
- Doty, Eftekhari, Gąsieniec, Severson, Uznański, and Stachowiak (FOCS 2021)

• Plurality consensus e.g.

- Becchetti, Clementi, Natale, Pasquale & Silvestri (SODA 2014)
- Bankhamer, Berenbrink, Biermeier, Elsässer, Hosseinpour, Kaaser & Kling (SODA 2022)

Majority consensus in synthetic biology

• Majority consensus ≈ state detection/signal amplification

Alnahhas et al., Nature Communications (2020), Cho et al. DISC (2019)

Genetic modules exist to program chosen ecological interactions

Li et al., Methods in Ecology and Evolution (2023)

Are biological cells different from digital computers?

Reproduction

Reproduction

Cell mortality

Competition

23

Competition

THE STRUGGLE FOR EXISTENCE

G. F. GAUSE

Zoological Institute of the University of Moscow

THE WILLIAMS & WILKINS COMPANY 1934

Competition

• exploitative competition: competition for common resources (nutrients, space, ...)

Competition

• interference competition: actively *interfere* with others' attempts to utilise resources

How does **demographic noise** and **competition** impact the performance of majority consensus dynamics?

Stochastic, competitive Lotka—Volterra models

Reproduction

Reproduction

Mortality

$$\stackrel{\delta}{\longrightarrow} \quad \mathcal{Z}$$

$$\begin{array}{c} \delta \\ \longrightarrow \end{array} \qquad \varnothing$$

Reproduction

Mortality

$$\stackrel{\delta}{\longrightarrow} \varnothing$$

Interspecific competition

Reproduction

$$\xrightarrow{\beta}$$
 $\left(\right)$ + $\left(\right)$

$$\xrightarrow{\beta}$$
 $\left(\right)$ + $\left(\right)$

$$\beta \cdot B_t$$

Mortality

$$\frac{\delta}{\rightarrow}$$
 \mathcal{Q}

$$\delta \cdot A_t$$

$$\stackrel{\delta}{ o}$$
 \varnothing

$$\delta \cdot B_t$$

Interspecific competition

$$\bigcap \hspace{0.1cm} \xrightarrow{\alpha}$$

$$\alpha A_t B_t$$

- Initial configuration $(A_0, B_0) \in \mathbb{N}^2$
 - initial gap $\Delta = |A_0 B_0|$
 - initial population size $n = A_0 + B_0$

- Initial configuration $(A_0, B_0) \in \mathbb{N}^2$
 - initial gap $\Delta = |A_0 B_0|$
 - initial population size $n = A_0 + B_0$
- Execution: Markov chain $(A_t, B_t)_{t\geq 0}$

- Initial configuration $(A_0, B_0) \in \mathbb{N}^2$
 - initial gap $\Delta = |A_0 B_0|$
 - initial population size $n = A_0 + B_0$

Question: How large does Δ need to be to reach majority consensus with high probability?

Competitive LV models: interference competition

Competitive LV models: interference competition

Self-destructive

("symmetric")

Competitive LV models: interference competition

Self-destructive

("symmetric")

OR

Non-self-destructive

("asymmetric")

Prior work: cell mortality only via competition

Self-destructive

Non-self-destructive

$$\frac{A}{A} + \frac{B}{B} \xrightarrow{\alpha} \frac{A}{B} \text{ with pr. } 1/2$$

$$\text{with pr. } 1/2$$

Prior work: cell mortality only via competition

Self-destructive

- $O(\sqrt{n \log n})$ gap sufficient w.h.p.
- no individual cell mortality ($\delta = 0$)

Cho, Függer, Hopper, Kushwaha, Nowak, Soubeyran (DISC 2019)

Non-self-destructive

$$\frac{A}{A} + \frac{B}{A} \Rightarrow \begin{cases} A & \text{with pr. } 1/2 \\ B & \text{with pr. } 1/2 \end{cases}$$

Prior work: cell mortality only via competition

Self-destructive

- $O(\sqrt{n \log n})$ gap sufficient w.h.p.
- no individual cell mortality ($\delta = 0$)

Cho, Függer, Hopper, Kushwaha, Nowak, Soubeyran (DISC 2019)

Non-self-destructive

$$\frac{A}{A} + \frac{B}{B} \xrightarrow{\alpha} \frac{A}{B} \text{ with pr. } 1/2$$
with pr. 1/2

- $O(\sqrt{n \log n})$ gap sufficient "w.h.p."
- birth via certain nutrient dynamics
- no individual cell mortality ($\delta = 0$)

Andaur, Burman, Függer, Kushwaha, Manssouri, Nowak, Rybicki (2021)

Self-destructive

Függer, Nowak, Rybicki (PODC 2024)

Non-self-destructive

$$\frac{A}{A} + \frac{B}{A} \Rightarrow \begin{cases} A & \text{with pr. } 1/2 \\ B & \text{with pr. } 1/2 \end{cases}$$

Függer, Nowak, Rybicki (PODC 2024)

Self-destructive

polylogarithmic gap Δ necessary and sufficient!

Függer, Nowak, Rybicki (PODC 2024)

Non-self-destructive

$$\frac{\Delta}{A} + \frac{\Delta}{B} \xrightarrow{\alpha} \frac{\Delta}{B} \text{ with pr. 1/2}$$
with pr. 1/2

Self-destructive

polylogarithmic gap Δ necessary and sufficient!

Függer, Nowak, Rybicki (PODC 2024)

Non-self-destructive

$$\frac{A}{A} + \frac{B}{B} \xrightarrow{\alpha} \frac{A}{B} \text{ with pr. } 1/2$$

$$\text{with pr. } 1/2$$

polynomial gap Δ necessary and sufficient!

Függer, Nowak, Rybicki (PODC 2024)

Self-destructive

$$\Omega\left(\sqrt{\log n}\right) - O\left(\log^2 n\right)$$

Függer, Nowak, Rybicki (PODC 2024)

Non-self-destructive

$$\frac{\Delta}{A} + \frac{\Delta}{B} \xrightarrow{\alpha} \frac{\Delta}{B} \text{ with pr. 1/2}$$
with pr. 1/2

$$\Omega\left(\sqrt{n}\right) - O\left(\sqrt{n\log n}\right)$$

Függer, Nowak, Rybicki (PODC 2024)

The dominating chain technique

$$\mathbb{N}^2$$

$$=(A_t, B_t)$$
 Reproduction

Mortality

Competition

Consensus time T =hitting time to (a, 0) or (0, b)for some a, b > 0

$=(A_t, B_t)$

Consensus time T =hitting time to (a, 0) or (0, b)for some a, b > 0

Assuming $A_0 > B_0$, write $\Delta_t = A_t - B_t$

$$\mathbb{N}^2$$

Consensus time
$$T =$$
hitting time to $(a, 0)$ or $(0, b)$
for some $a, b > 0$

Assuming
$$A_0 > B_0$$
, write $\Delta_t = A_t - B_t$

Probability of majority consensus =
$$\Pr[\Delta_T > 0]$$

Mortality

Competition

$$\mathbb{N}^2$$

$$= (A_t, B_t)$$
 Reproduction

$$\bullet \qquad \bullet \qquad \bullet$$

$$\stackrel{\mathcal{S}}{\longrightarrow} \varnothing$$

$$\stackrel{\delta}{\longrightarrow} \varnothing$$

$$\alpha + 0 \rightarrow c$$

Reproduction

$$\bigcap$$
 + \bigcap \bigcap \bigcap

$$\bullet \qquad \bullet \qquad \bullet \qquad \bullet$$

Mortality

Reproduction

Mortality

Competition

Reproduction

Mortality

Competition

Dominating chain technique

Stochastic domination

Find a single-species birth-death chain $(N_t)_{t\geq 0}$

Dominating chain technique

Stochastic domination

Find a single-species birth-death chain $(N_t)_{t\geq 0}$ that stochastically dominates $\min{(A_t, B_t)} \leq N_t$

Dominating chain technique

Stochastic domination

Find a single-species birth-death chain $(N_t)_{t\geq 0}$ that stochastically dominates $\min{(A_t, B_t)} \leq N_t$

In state k,

- birth probability p(k) = O(1/k)
- death probability $q(k) = \Omega(1)$

LV chain

Single-species chain

consensus time of $(A_t, B_t)_{t \ge 0}$

absorption time of $(N_t)_{t\geq 0}$

LV chain

Single-species chain

consensus time of $(A_t, B_t)_{t \ge 0}$

absorption time of $(N_t)_{t\geq 0}$

w.h.p. O(n)

w.h.p. O(n)

LV chain	Single-species chain
consensus time of $(A_t, B_t)_{t \ge 0}$	absorption time of $(N_t)_{t\geq 0}$
w.h.p. $O(n)$	w.h.p. $O(n)$

$$\Delta_t = A_t - B_t$$

LV chain	Single-species chain
consensus time of $(A_t, B_t)_{t \ge 0}$	absorption time of $(N_t)_{t\geq 0}$
w.h.p. $O(n)$	w.h.p. $O(n)$

steps that decrease $\Delta_t = A_t - B_t$ before consensus time

steps that increase N_t

LV chain	Single-species chain
consensus time of $(A_t, B_t)_{t \ge 0}$	absorption time of $(N_t)_{t\geq 0}$
w.h.p. $O(n)$	w.h.p. $O(n)$

steps that decrease $\Delta_t = A_t - B_t$ before consensus time w.h.p. $O(\log^2 n)$

steps that increase N_t w.h.p. $O(\log^2 n)$

Self-destructive

$$\Delta_0 = O\left(\log^2 n\right) \text{ suffices}$$

Non-self-destructive

$$\frac{A}{A} + \frac{B}{B} \xrightarrow{\alpha} \frac{A}{B} \text{ with pr. 1/2}$$

$$\text{with pr. 1/2}$$

$$\Delta_0 = O\left(\sqrt{n\log n}\right) \text{ suffices}$$

What about no competition?

- independent birth-death processes
- probability that A "wins" is

$$\frac{A_0}{A_0 + B_0}$$

What about intraspecific competition?

Interspecific competition

Intraspecific competition

• if $\gamma \approx \alpha$, then probability that A "wins" is

$$\frac{A_0}{A_0 + B_0}$$

What about intraspecific competition?

Interspecific competition

$$\bigcap$$
 + \bigcap $\stackrel{\alpha}{\rightarrow}$ \bigcirc

Intraspecific competition

• if $\gamma \approx \alpha$, then probability that A "wins" is

$$A_0 + B_0$$

Open problem:

What happens with small $\gamma > 0$?

Today:
$$\gamma = 0$$

Closing thoughts

- can analyse (simple) individual-based models with ecological processes
- sensitivity to noise depends on mode of competition (and kinetics)
- Open problems
 - dealing with intraspecific competition?
 - beyond mass action kinetics?
 - resource-consumer dynamics?

Closing thoughts

 can analyse (simple) individual-based models with ecological processes

 sensitivity to noise depends on mode of competition (and kinetics)

- Open problems
 - dealing with intraspecific competition?
 - beyond mass action kinetics?
 - resource-consumer dynamics?

